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TEMPERATURE DISTRIBUTION IN LAMINAR FLOW OF AN INCOMPRESSIBLE
FLUID IN A RECTANGULAR CHANNEL ALLOWING FOR ENERGY DISSIPATION
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Expressions have been obtained for the temperature distribution over

the section and hear flux through the channel wall in the presence of
energy dissipation for the case of laminar flow of a liquid in an in-
finitely long channel of rectangular section with constant wall tempera-
ture.

Many physical and chemical investigations neces-
sarily involve laminar flow of a viscous liquid in a
channe! of rectangular section with constant wall tem-
perature. Even for velocities small in absolute mag-
nitude, but having large gradients due to dissipation
of mechanical energy, heating of the liquid occurs,
and its temperature may differ considerably from that
of the channel walls, especially for viscous liquids.
"™, heating of the liquid must be taken into account
ir accurate investigations; moreover, during flow,
ior example, of chemically reacting substances, the
reaction rate may depend appreciably on stream tem-
perature, and in that event the liberation of frictional
heat may have a substantial influence on the course of
the chemical reaction.

Exact solutions exist for the differential equations
of motion and energy, allowing for friction heating,

“for example, that of Schlichting for a plane narrow
channel [1].

This paper examines laminar flow of a liquid in a
channel of rectangular section, taking account of en-
ergy dissipation. Results of an analytical solution are
presented, and the temperature distribution over the
channel section is obtained.

The differential equations of motion and energy [1]
in a rectangular-channel flow, taking account of dissi-
pation of mechanical energy, have the form, respec-
tively,

FW,  FW, 1 P

e ; 1
ox* oy? po 0z @

FLLEL__w (AN (W
e L ax)*(ay” (

Equations (1) and (2) were obtained under the follow~
ing conditions:

1. Steady established flow of an incompressible lig-
uid with constant physical properties, independent of
temperature, in an infinitely long channel,

2, Liquid flow laminar, i.e., the velocity compo-
nents across the section are zero Wx = Wy = 0 and
P = const.

3. Influence of body forces (gravity forces) not
taken into account.

The solution of (1) and (2) is carried out with the

following boundary conditions (Fig. 1):

CX=0, x=a W,=0; t =1,

y=0y=0b W,=0; t =1. ()

For simplicity, we examine flow in a channel with

identical wall temperature, since a difference in the
temperatures of the walls does not introduce a differ~
ence in principle into the solution of the problem.

In conformity with the assumed constancy of the

physical properties, Egs. (1) and {2) may be solved
independently of one another. Transferring in (1) and

(2) and boundary conditions (3) to the new variables

Xe Lo ve Lo ret—1,
a b

we apply a finite integral Fourier sine transforma-
tion with respect to the variable X [2] to solve the
equation of motion (1). Allowing for the boundary con-
ditions, the result may be written in the form of the
following series:

where

The velocity distribution presented in [4] looks
somewhat different because of a different choice of
coordinate origin.

We shall use velocity distribution (4) to solve the
energy equation. Substituting the expression for de-
rivatives of velocity with respect to the coordinates in
the energy equation, and once more applying the finite
integral Fourier sine transformation with respect to
the variable X, we obtain, taking account of the bound-
ary conditions,
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where

T = | TsinkXdX,
§

and k is an odd integer.
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Fig. 1. Heating of the liquid

on the channel axis as a func-

tion of the ratio of the sides
B =t/(u/A) Wg.

We write the boundary conditions for T:

Y=0;Y=m T=0. 6)

The general solution for (5) may be written as follows

[3]:
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where f(Y) is a particular solution of (5).
Determining the constants C; and C, from boundary
conditions (6), we obtain an expression for T:

7 — O fexp (kb)) —] /O, (ky L) g
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where f(0) and f(7) are values of f(Y) when Y = 0 and
Y=m.
Using the conversion formula [2], we obtain the
temperature distribution over the channel section:
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Using the temperature distribution obtained, we
may obtain an expression for the heat flux through any
wall:
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Fig. 2. Temperature distri-
bution in the mid-plane (Y =
= 1/2) of a square channel

B = t/(u/») Wi.

Thus, for the heat flux at the wall when X = 0 the
following expression is obtained:
23 0
g=— 2 S\ A 7 (0)
0 e exp (k= b/a) —exp (— k= b/a)

k==1,3,5...

X [(exp (—Fknbla)—f (=)/f (0)) exp (kY b/a) + (11)

+(“3XP(/‘3“‘Z—)+%—) exp (—kY—Z—” +f(Y)}.

The convergence of the series (9) deteriorates with
decrease of the ratio b/a. Thus, in calculations of the
temperature on the channel axis using the first three
values of the number p (1, 3, 5), we obtained the re-
sult that for b/a = 1 the value of the third term of ser-
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ies (9) (k = 5) was about 0.1 of the value of the first
term (k = 1), and for b/a = 5 it was 0.05,

Figure 2 shows the temperature distribution in the
mid-plane (when Y = 7/2) of a square channel, while
Fig. 1 shows the maximum temperature, calculated
according to (9), at the mid-point of the channel as a
function of the ratio of the sides. It follows from Fig,
1 that the dimensionless number t A/u W2 reaches a
maximum when b/a = 1; with increase of the ratio of
the sides the quantity t A/uW} falls sharply, and in
the limit, when b/a — «, it reaches the value 0,75
given in [1] for the case of established laminar flow
in a narrow plane channel.

NOTATION

Wy is the stream velocity; x, y are the coordinates
perpendicular to flow direction; z is the coordinate
along flow; u is the viscosity of liquid; A is the thermal
conductivity of liquid; t is the temperature of liquid; P
is the pressure; V\—/z is the mean mass flowrate; q is
the heat flux at wall; (at/an)w is the temperature gra-
dient at wall.
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