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Expressions have been obtained for the temperature distribution over 
the section and heat flax through the channel wail in the presence of 
energy dissipation for the case of  lam/nar flow of  a liquid in an in- 
finitely long channel of rectangular section with constant wall tempera- 
ture. 

Many physical and chemical investigations neces-  
sarily involve laminar flow of a viscous liquid in a 
channe! of rectangular section with constant wall t em-  
perature.  Even for velocities small in absolute mag- 
n~Lade, but having large gradients due to dissipation 
of mechanical energy, heating of the liquid occurs,  
and its temperature may differ considerably from that 
of ~he channel walls, especially for viscous liquids. 
~-',; ~ heating of the liquid must be taken into account 
i> accurate investigations; moreover ,  during flow, 
ior  example, of chemically reacting substances, the 
reaction rate may depend appreciably on s t ream tem-  
perature,  and in that event the liberation of frictional 
heat may have a substantial influence on the course of 
the chemical reaction. 

Exact solutions exist for the differential equations 
of motion and energy, allowing for friction heating, 

f o r  example, that of Schlichting for a plane narrow 
channel [1]. 

This paper examines laminar flow of a liquid in a 
channel of rectangular  section, taking account of en- 
ergy dissipation. Results of an analytical solution are  
presented, and the temperature distribution over the 
channel section is obtained. 

The differential equations of motion and energy [1] 
in a rectangular-channel flow, taking account of dissi-  
pation of mechanical energy, have the form, respec-  
tively, 
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The solution of (1) and (2) is carr ied out with the 
following boundary conditions (Fig. 1): 

X=O; x = a; Wz = O; t = tr 

y--O; t.q=b; W~=O; t=te.  (3) 

For  simplicity, we examine flow in a channel with 
identical wall temperature,  since a difference in the 
temperatures  of the walls does not introduce a differ- 
ence in principle into the solution of the problem. 

In conformity with the assumed constancy of the 
physical properties,  Eqs. {1) and (2) may be solved 
independently of one another. Transferr ing in (1) and 
(2) and boundary conditions (3) to the new variables 

X 
X = - - , ' ~ ,  Y:= tj_u, T = t _ _ t e ,  

a b 

we apply a finite integral Fourier  sine t ransforma-  
tion with respect  to the variable X [2] to solve the 
equation of motion (1). Allowing for the boundary con- 
ditions, the result  may be written in the form of the 
following ser ies:  
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p=1,3 ,5 , . .  

2a pa , (4) 

where 

a 2 1 OR 

w 2 ~ Oz 

Equations (1) and (2) were obtained under the follow- 
ing conditions: 

1. Steady established flow of an incompressible liq- 
uid with constant physical propert ies,  independent of 
temperature,  in an infinitely long channel. 

2. Liquid flow laminar, i . e . ,  the velocity compo- 
nents ac ross  the section are  zero W x = Wy = 0 and 
P = const.  

3. Influence of body forces {gravity forces) not 
taken into account. 

The velocity distribution presented in [4] looks 
somewhat different because of a different choice of 
coordinate origin. 

We shall use velocity distribution (4) to solve the 
energy equation. Substituting the expression for de- 
rivatives of velocity with respect to the coordinates in 
the energy equation, and once more  applying the finite 
integral Four ier  sine t ransformation with respect  to 
the variable X, we obtain, taking account of the bound- 
ary  conditions, 
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and k is an odd integer. 
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F i g .  1. H e a t i n g  of  t h e  l iqu id  
on the  c h a n n e l  ax i s  a s  a f unc -  

t i o n  of  t he  r a t i o  of  t h e  s i d e s  
B =- t / (Mx) W2 . 

We w r i t e  t he  b o u n d a r y  c o n d i t i o n s  f o r  T:  

Y ~ o ; Y = ~ ;  f = o .  (6) 

The  g e n e r a l  so lu t i on  f o r  (5) m a y  be  w r i t t e n  as  f o l l o w s  
[ 3 ] :  

T = C l e x p (  k b-a Y ) + C ~ e x p  ( - k  b-a Y ) - b f ( Y ) ,  (7) 

w h e r e  f (Y)  i s  a p a r t i c u l a r  s o l u t i o n  of  (5). 

D e t e r m i n i n g  the  c o n s t a n t s  C 1 and C 2 f r o m  b o u n d a r y  
c o n d i t i o n s  (6), we  ob t a in  an  e x p r e s s i o n  f o r  T :  

).- f ( O ) [ e x p ( - - k ~ b / a ) - - [ ( ~ ) / [ ( O ) ]  exp (kY b ) 
= -- + (8) 

exp (k ~ b/a) - -  exp ( - -  k r, b/a) a 

f (0) [[ ('~)/f (0 ) - -  exp (kub/a)l exp ( - - k Y  b ~  § + I (Y), 
exp (k r, b/a) - -  exp (-- k ~ b/a) ~ \ a s / 

w h e r e  f (0 )  and f (~)  a r e  v a l u e s  o f f ( Y )  w h e n  Y = 0 and 
V - - T r .  

U s i n g  t h e  c o n v e r s i o n  f o r m u l a  [2], we  ob t a in  t h e  
t e m p e r a t u r e  d i s t r i b u t i o n  o v e r  t he  channe I  s e c t i o n :  

t= 2~? - -  sinkX =: 

k=l 

. . . .  exp (k~ b/a) - -exp  (--k-=b/a) 
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Using the t e m p e r a t u r e  d i s t r i bu t ion  obtained,  we 
m a y  obta in  an e x p r e s s i o n  for  the  hea t  f lux through any 
wal l :  

�9 at 
q ~ - -  k ( ~ n ) ~ r -  (10) 

z ~ / ~ _ i  _. ) ! \  I 

Fig .  2. T e m p e r a t u r e  d i s t r i -  
but ion in the m i d - p l a n e  (Y = 
= 7r/2) of  a squa re  channel  

B = t / 0 # x )  ~~z. 

Thus,  for  the  hea t  f lux a t  the  wal l  when X = 0 the  
fol lowing e x p r e s s i o n  i s  obta ined:  

q-~ - k • 
a ~ exp(kr, b/a)--exp (--k~b/a) 

k~[  ,3 ,5 . . .  

• [(exp ( . - /~n b/a)--f  (r162 (0)) exp (kYb/a) § (11) 

The c o n v e r g e n c e  of the s e r i e s  (9) d e t e r i o r a t e s  with 
d e c r e a s e  of  the  r a t i o  b/a.  Thus,  in c a l c u l a t i o n s  of  the 
t e m p e r a t u r e  on the channel  ax i s  us ing  the  f i r s t  t h r e e  
v a l u e s  of  the  n u m b e r  p (1, 3, 5), we obta ined  the r e -  
su l t  tha t  fo r  b/a = 1 the  va lue  of the  t h i r d  t e r m  of  s e r -  

i e s  (9) (k = 5) was about 0 .1  of the va lue  of the  f i r s t  
t e r m  (k = 1), and fo r  b/a = 5 i t  was  0 .05 .  

F igu re  2 shows the t e m p e r a t u r e  d i s t r ibu t ion  in the 
m i d - p l a n e  (when Y = ~/2)  of a squa re  channel ,  while  
F ig .  1 shows the  m a x i m u m  t e m p e r a t u r e ,  ca l cu la t ed  
acco rd ing  to (9), a t  the  mid -po in t  of  the channel  as  a 
function of the r a t io  of the s i d e s .  It fol lows f rom Fig .  
1 that  the  d i m e n s i o n l e s s  number  t k /#~2z r e a c h e s  a 
m a x i m u m  when b/a = 1; with i n c r e a s e  of the r a t io  of 
the  s ides  the  quant i ty  t X/#Wz 2 fa l l s  sha rp ly ,  and in 
the  l imi t ,  when b/a - -  ~, i t  r e a c h e s  the value  0 .75 
given in  [1] fo r  the  c a s e  of  e s t a b l i s h e d  l a m i n a r  flow 
in a n a r r o w  plane channel .  

NOTATION 

W z i s  the s t r e a m  veloc i ty ;  x, y a r e  the c o o r d i n a t e s  
p e r p e n d i c u l a r  to flow d i rec t ion ;  z is  the coord ina t e  
along flow; tt is  the v i s c o s i t y  of l iquid;  k is  the t h e r m a l  
conduc t iv i ty  of l iquid;  t is  the t e m p e r a t u r e  of l iquid;  P 
is  the p r e s s u r e ;  V~ z is  the mean m a s s  f lowra te ;  q is  
the hea t  f lux at wal l ;  ( a t / a n ) w  is  the t e m p e r a t u r e  g r a -  
d ient  at wal l .  
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